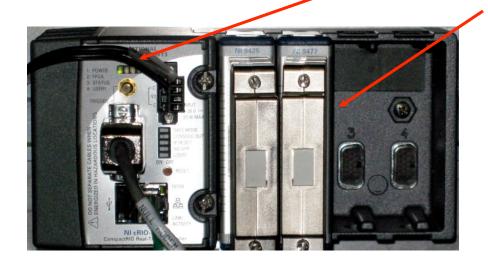
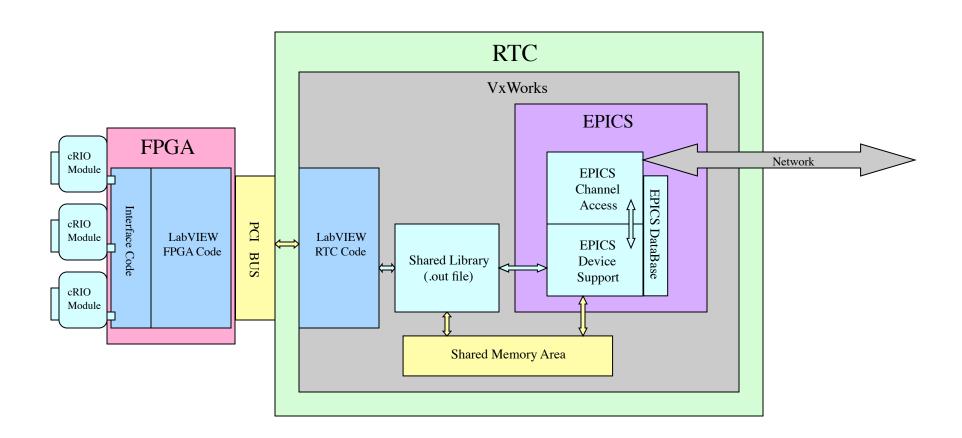
Experience Running Embedded EPICSon NI CompactRIO


Eric Björklund Dolores Baros Scott Baily

What is CompactRIO?

- Power-PC based Real Time Controller (RTC).
- FPGA Backplane
- Connected via PCI bus
- Designed for harsh environments
- Fast PLC
 - μSec vs. mSec Response
- Programmed in LabVIEW instead of Ladder Logic
 - Both FPGA and RTC are programmed in LabVIEW

Embedding EPICS IOC on CompactRIO


- Real Time Controller (RTC) is a Power PC running vxWorks (6.3)
- vxWorks license not required!
 - NI has permission to distribute the vxWorks header files
- Special BSP provided by NI
 - Includes NFS & Telnet
 - Priority range allocated for EPICS
 - EPICS runs at lower priority (100-199) than LabVIEW (10-100)

System Architecture

Embedded EPICS vs. NI CA Server

- Complete EPICS IOC Environment
 - All record types and fields are visible and available
 - EPICS Utilities
 - Archiver
 - Channel Access Security
 - Bumpless Reboot
 - Sequencer
- Maximum Flexibility on How the Application is Partitioned
 - FPGA / LabVIEW RTC / EPICS Database
- Not an "Out-Of-The-Box" Solution
 - Requires special BSP (available from NI on request)
 - Additional configuration required

The Project

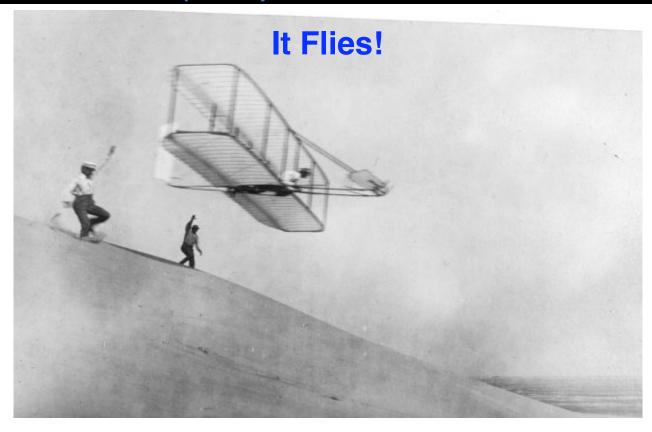
- Replace one accelerator module's "Industrial I/O" channels with cRIO.
 - 40 binary outputs
 - 64 binary inputs
 - 32 analog inputs
 - 8 stepper motor channels
- Actually, replaced two AB Control Logix crates that had originally replaced the original 1960's "RICE" system.
 - Replaced two Control Logix crates with two cRIO crates
- Basic SCADA
 - No closed loop. No exotic timing. But....
 - System must emulate our 1960's vintage "RICE" system.

Previous Results (Vancouver, 2009)

Previous Results (Vancouver, 2009)

- Fire Alarm Forced Building Evacuation Before Results Could Be Reported.
 - (Nothing actually caught fire)
- System did work, but with limited functionality.
 - Only deployed the Binary I/O part during 2009 run-cycle
 - Our strategy of trying to push as much as possible into the FPGA resulted in running out of FPGA space (Virtex II)
 - Not all binary outputs could be implemented
 - 11 hour FPGA compiles
- System ran for the entire 2009 run-cycle without incident.

Improvements for 2010 Run Cycle


- Upgraded cRIO Hardware.
 - Faster CPU
 - VIRTEX 5 FPGA
 - Plenty of FPGA Space
- Upgraded from LabVIEW 8.5.1 to LabVIEW 2009
- Faster Compile Server
 - 3 hour compiles (Max)
- Full functionality for all Binary Channels
- Added Analog Channels (2nd cRIO)

Current Results (2010)

Both Systems Have Been Running for 4 Months Without Incident

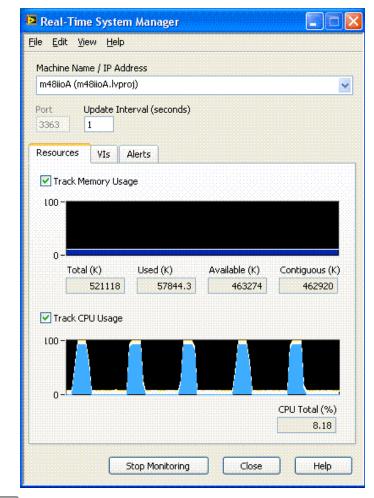
Experience:

- Noise on Analog Inputs.
 - 2 Pole Butterworth Filter Applied in FPGA
- Our On-Line Reconfiguration Scheme Still Needs Work

Performance – Benchmarked System

- Processor
 - 800 MHz Power PC
 - 512 Mbyte DRAM
 - 4 GB Internal Storage
- FPGA
 - LX85 Virtex-5

- EPICS Load
 - 57 Records
 - 19 CA Clients
 - 94 CA Connections



Performance – CPU Load

- iocStats:
 - **0.18 %**
- vxWorks "spy"
 - 317,796,426 %^{*}
- LabVIEW System Monitor:
 - **8.18 %**

*Lacks some credibility

Performance – Channel Access Benchmarks (using catime)

	mv167			cRIO 9024			mv6100		
	(33 Mhz)			(800 Mhz)			(1.3 GHz)		
			Speed			Speed			Speed
Test	Items/Sec	Mbps	Increase	Items/Sec	Mbps	Increase	Items/Sec	Mbps	Increase
Channel									
Connect	1,661.8	0.9	1	5,303.1	2.9	3.19	5,183.7	2.9	3.12
Async									
Put	10,776.3	1.5	1	26,325.5	3.6	2.44	46,524.5	6.3	4.32
Async									
Get	9,683.4	2.6	1	22,773.1	6.0	2.35	23,392.7	6.2	2.42
Synch									
Get	773.9	0.2	1	1,491.4	0.4	1.93	2,569.4	0.7	3.32
Average									
Perf.			1			1.98			2.63

Future Plans (Immediate)

 A third embedded EPICS cRIO was installed last month for timing sequence control.

Future Plans

- 2011 Run Cycle
 - Replace Industrial Controls for One Sector (5 modules) with cRIO.
 - Replace One Serial CAMAC Loop (4 crates) with cRIO.
- cRIO Wire Scanners
 - cRIO Event Receiver
- More General-Purpose Shared Memory Interface
 - Continuation of CosyLAB's Initial Work.

